skip to main content


Search for: All records

Creators/Authors contains: "Lew, Ben W. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Brown dwarfs (BDs) in ultra-short-period orbits around white dwarfs (WDs) offer a unique opportunity to study the properties of tidally locked, fast-rotating (1–3 hr), and highly irradiated atmospheres. Here we present phase-resolved spectrophotometry of the WD–BD binary SDSS 1557, which is the fifth WD–BD binary in our six-object sample. Using the Hubble Space Telescope Wide Field Camera 3 Near-infrared G141 instrument, the 1.1–1.7μm phase curves show rotational modulations with semiamplitudes of 10.5% ± 0.1%. We observe a wavelength-dependent amplitude, with longer wavelengths producing larger amplitudes, while no wavelength-dependent phase shifts were identified. The phase-resolved extracted BD spectra exhibit steep slopes and are nearly featureless. A simple radiative energy redistribution atmospheric model re-creates the hemisphere-integrated brightness temperatures at three distinct phases and finds evidence for weak redistribution efficiency. Our model also predicts a higher inclination than previously published. We find that SDSS 1557B, the second most irradiated BD in our sample, is likely dominated by clouds on the nightside, whereas the featureless dayside spectrum is likely dominated by Hopacity and a temperature inversion, much like the other highly irradiated BD EPIC 2122B.

     
    more » « less
  2. Abstract

    With infrared flux contrasts larger than typically seen in hot Jupiter, tidally locked white dwarf–brown dwarf binaries offer a superior opportunity to investigate atmospheric processes in irradiated atmospheres. NLTT5306 is such a system, with aMBD= 52 ± 3MJupbrown dwarf, orbiting aTeff= 7756 ± 35 K white dwarf with an ultra-short period of ∼102 minutes. We present Hubble Space Telescope/Wide Field Camera 3 spectroscopic phase curves of NLTT5306, consisting of 47 spectra from 1.1 to 1.7μm with an average signal-to-noise ratio ∼ 65 per wavelength. We extracted the phase-resolved spectra of the brown dwarf NLTT5306B, finding a small <100 K day–night temperature difference (∼5% of the average day-side temperature). Our best-fit model phase curves revealed a complex wavelength-dependence on amplitudes and relative phase offsets, suggesting longitudinal–vertical atmospheric structure. The night-side spectrum was well fit by a cloudy, nonirradiated atmospheric model while the day side was best matched by a cloudy, weakly irradiated model. Additionally, we created a simple radiative energy redistribution model of the atmosphere and found evidence for efficient day-to-night heat redistribution and a moderately high Bond albedo. We also discovered an internal heat flux much higher than expected given the published system age, leading to an age reassessment that resulted in NLTT5306B most likely being much younger. We find that NLTT5306B is the only known significantly irradiated brown dwarf where the global temperature structure is not dominated by external irradiation, but rather its own internal heat. Our study provides an essential insight into the drivers of global circulation and day-to-night heat transport as a function of irradiation, rotation rate, and internal heat.

     
    more » « less
  3. Abstract

    We observed HD 19467 B with JWST’s NIRCam in six filters spanning 2.5–4.6μm with the long-wavelength bar coronagraph. The brown dwarf HD 19467 B was initially identified through a long-period trend in the radial velocity of the G3V star HD 19467. HD 19467 B was subsequently detected via coronagraphic imaging and spectroscopy, and characterized as a late-T type brown dwarf with an approximate temperature ∼1000 K. We observed HD 19467 B as a part of the NIRCam GTO science program, demonstrating the first use of the NIRCam Long Wavelength Bar coronagraphic mask. The object was detected in all six filters (contrast levels of 2 × 10−4to 2 × 10−5) at a separation of 1.″6 using angular differential imaging and synthetic reference differential imaging. Due to a guide star failure during the acquisition of a preselected reference star, no reference star data were available for post-processing. However, reference differential imaging was successfully applied using synthetic point-spread functions developed from contemporaneous maps of the telescope’s optical configuration. Additional radial velocity data (from Keck/HIRES) are used to constrain the orbit of HD 19467 B. Photometric data from TESS are used to constrain the properties of the host star, particularly its age. NIRCam photometry, spectra, and photometry from the literature, and improved stellar parameters are used in conjunction with recent spectral and evolutionary substellar models to derive the physical properties of HD 19467 B. Using an age of 9.4 ± 0.9 Gyr inferred from spectroscopy, Gaia astrometry, and TESS asteroseismology, we obtain a model-derived mass of 62 ± 1MJ, which is consistent within 2σwith the dynamically derived mass of8112+14MJ.

     
    more » « less